The Wisdom of Networks: A General Adaptation and Learning Mechanism of Complex Systems: The Network Core Triggers Fast Responses to Known Stimuli; Innovations Require the Slow Network Periphery and Are Encoded by Core-Remodeling.

نویسنده

  • Peter Csermely
چکیده

I hypothesize that re-occurring prior experience of complex systems mobilizes a fast response, whose attractor is encoded by their strongly connected network core. In contrast, responses to novel stimuli are often slow and require the weakly connected network periphery. Upon repeated stimulus, peripheral network nodes remodel the network core that encodes the attractor of the new response. This "core-periphery learning" theory reviews and generalizes the heretofore fragmented knowledge on attractor formation by neural networks, periphery-driven innovation, and a number of recent reports on the adaptation of protein, neuronal, and social networks. The core-periphery learning theory may increase our understanding of signaling, memory formation, information encoding and decision-making processes. Moreover, the power of network periphery-related "wisdom of crowds" inventing creative, novel responses indicates that deliberative democracy is a slow yet efficient learning strategy developed as the success of a billion-year evolution. Also see the video abstract here: https://youtu.be/IIjP7zWGjVE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Wisdom of Networks: A General Adaptation and Learning Mechanism of Complex Systems

I hypothesize that re-occurring prior experience of complex systems mobilizes a fast response, whose attractor is encoded by their strongly connected network core. In contrast, responses to novel stimuli are often slow and require the weakly connected network periphery. Upon repeated stimulus, peripheral network nodes remodel the network core that encodes the attractor of the new response. This...

متن کامل

Using Artificial Neural Network Algorithm to Predict Tensile Properties of Cotton-Covered Nylon Core Yarns

Artificial Neural Networks are information processing systems. Over the past several years, these algorithms have received much attention for their applications in pattern completing, pattern matching and classification and also for their use as a tool in various areas of problem solving. In this work, an Artificial Neural Network model is presented for predicting the tensile properties of co...

متن کامل

The Application of Complex Networks Analysis to Assess Iran's Trade and It's Most Important Trading Partners in Asia

The existing trade models suggest that for tradable goods potential partners can be many, but eventually only one (the one offering the best price) should be selected, therefore relatively few (unidirectional) trade links will appear between countries. If the structure of international trade flows describes as a network, trade link would give rise between countries. This paper exploit recently-...

متن کامل

Using Artificial Neural Network Algorithm to Predict Tensile Properties of Cotton-Covered Nylon Core Yarns

Artificial Neural Networks are information processing systems. Over the past several years, these algorithms have received much attention for their applications in pattern completing, pattern matching and classification and also for their use as a tool in various areas of problem solving. In this work, an Artificial Neural Network model is presented for predicting the tensile &#10properties of ...

متن کامل

An Irregular Lattice Pore Network Model Construction Algorithm

Pore network modeling uses a network of pores connected by throats to model the void space of a porous medium and tries to predict its various characteristics during multiphase flow of various fluids. In most cases, a non-realistic regular lattice of pores is used to model the characteristics of a porous medium. Although some methodologies for extracting geologically realistic irregular net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BioEssays : news and reviews in molecular, cellular and developmental biology

دوره 40 1  شماره 

صفحات  -

تاریخ انتشار 2018